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April 23 milestone: 
1. Profile the current implementation of einsum in PyTorch on different sizes of the matrix and different types of 
operations 
2. Set up the development environment for PyTorch  
3. Get familiar with the codebase 
4. Propose different possible schemes for optimizations of the original code 
5. Try a few of those schemes 

Things that we have accomplished: 
1. Profiled current einsum in PyTorch with different types of operations using both CPU and GPU. Some 

results are shown below: 
 

Element-wise matrix multiplication 3D Tensor Muitiplication 

Tensor Dim Einsum Manual Tensor Dim Einsum Manual 

(300, 300) GPU:0.000092 
CPU:0.020750 

GPU:0.000058 
CPU:0.019873 

(100, 100, 100) GPU:0.000138 
CPU:0.021618 

GPU:0.000051 
CPU:0.000685 

(3000, 3000) GPU:0.000373 
CPU:0.050733 

GPU:0.000283 
CPU:0.030597 

(500, 500, 500) GPU:0.003795 
CPU:0.422206 

GPU:0.003617
CPU:0.343404 

(10000, 10000) GPU:0.007234 
CPU:0.364078 
 

GPU:0.004895 
CPU:0.278794 
 

(1000, 1000, 1000) CPU:3.692333 CPU:3.171115 

As shown in the table, performing Pytorch einsum on GPU does speed up the computation compared with 
performing einsum on CPU. One possible reason is that at::mul includes GPU optimization.  
 

2. We have successfully set up the development environment using the development guide on 
https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md 

3. We have successfully identified the initial pull request for einsum, and got familiar with the files we need 
to change.  

4. We have proposed different possible schemes for optimizations: 
- Optimize some particular einsum operations (like matrix outer product, matrix multiplication) 

case by case 
- Leverage CUDA to accelerate the computations 
- Wisely choose the order of merging results in the computation process to add scalability 

https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md

