
Intermediate Report
Shawn Zhong, Yuhan Liu, Ziyi Zhang

April 23 milestone:
1. Profile the current implementation of einsum in PyTorch on different sizes of the matrix and different types of
operations
2. Set up the development environment for PyTorch
3. Get familiar with the codebase
4. Propose different possible schemes for optimizations of the original code
5. Try a few of those schemes

Things that we have accomplished:
1. Profiled current einsum in PyTorch with different types of operations using both CPU and GPU. Some

results are shown below:

Element-wise matrix multiplication 3D Tensor Muitiplication

Tensor Dim Einsum Manual Tensor Dim Einsum Manual

(300, 300) GPU:0.000092
CPU:0.020750

GPU:0.000058
CPU:0.019873

(100, 100, 100) GPU:0.000138
CPU:0.021618

GPU:0.000051
CPU:0.000685

(3000, 3000) GPU:0.000373
CPU:0.050733

GPU:0.000283
CPU:0.030597

(500, 500, 500) GPU:0.003795
CPU:0.422206

GPU:0.003617
CPU:0.343404

(10000, 10000) GPU:0.007234
CPU:0.364078

GPU:0.004895
CPU:0.278794

(1000, 1000, 1000) CPU:3.692333 CPU:3.171115

As shown in the table, performing Pytorch einsum on GPU does speed up the computation compared with
performing einsum on CPU. One possible reason is that at::mul includes GPU optimization.

2. We have successfully set up the development environment using the development guide on
https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md

3. We have successfully identified the initial pull request for einsum, and got familiar with the files we need
to change.

4. We have proposed different possible schemes for optimizations:
- Optimize some particular einsum operations (like matrix outer product, matrix multiplication)

case by case
- Leverage CUDA to accelerate the computations
- Wisely choose the order of merging results in the computation process to add scalability

https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md

