Intermediate Report

Shawn Zhong, Yuhan Liu, Ziyi Zhang

April 23 milestone:

1. Profile the current implementation of einsum in PyTorch on different sizes of the matrix and different types of operations

- 2. Set up the development environment for PyTorch
- 3. Get familiar with the codebase
- 4. Propose different possible schemes for optimizations of the original code
- 5. Try a few of those schemes

Things that we have accomplished:

1. Profiled current einsum in PyTorch with different types of operations using both CPU and GPU. Some results are shown below:

Element-wise matrix multiplication			3D Tensor Muitiplication		
Tensor Dim	Einsum	Manual	Tensor Dim	Einsum	Manual
(300, 300)	GPU:0.000092 CPU:0.020750	GPU:0.000058 CPU:0.019873	(100, 100, 100)	GPU:0.000138 CPU:0.021618	GPU:0.000051 CPU:0.000685
(3000, 3000)	GPU:0.000373 CPU:0.050733	GPU:0.000283 CPU:0.030597	(500, 500, 500)	GPU:0.003795 CPU:0.422206	GPU:0.003617 CPU:0.343404
(10000, 10000)	GPU:0.007234 CPU:0.364078	GPU:0.004895 CPU:0.278794	(1000, 1000, 1000)	CPU:3.692333	CPU:3.171115

As shown in the table, performing Pytorch einsum on GPU does speed up the computation compared with performing einsum on CPU. One possible reason is that at::mul includes GPU optimization.

- 2. We have successfully set up the development environment using the development guide on <u>https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md</u>
- 3. We have successfully identified the initial pull request for einsum, and got familiar with the files we need to change.
- 4. We have proposed different possible schemes for optimizations:
 - Optimize some particular einsum operations (like matrix outer product, matrix multiplication) case by case
 - Leverage CUDA to accelerate the computations
 - Wisely choose the order of merging results in the computation process to add scalability